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SUMMARY

Further computational experiments have been conducted to study the char-
acteristics of flow reversal and separation in unsteady boundary layers.
One set of calculations was performed using the first-order, time-
dependent turbulent boundary-layer equations, and extended earlier work
by Nash and Patel to a wider raﬁge of flows. Another set of calcula-
tions was performed for laminar flow using the time-dependent Navier-

Stokes equations.

The results of the calculations confirm previous conclusions concerning
the existence of a regime of unseparated flow, containing an embedded
region of reversal, which is accessible to first-order boundary-layer
theory. However, certain doubts are cast on the precise nature of. the
events which accompany the eventual breakdown of the theory due to
singularity onset. The earlier view that the singularity appears as the
final event in a sequence involving rapid thickening of the boundary
layer and the formation of a localized region of steep gradients, is
called into question by the present results. It appears, first, that
singularity onset is not necessarily preceded by rapid boundary-layer
thickening, or even necessarily produces immediate thickening. Further-
more, the formation of a region of steep gradients could not be repro-
duced in the solutions of the Navier-Stokes equations, and may, itself,
prove to be a feature of first-order boundary-layer theory and not part

of a more complete description of the flow.
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INTRODUCTION

Extensive calculations have been performed, over the last several years,
to study the characteristics of time-dependent turbulent boundary layers.
These calculations have taken the form of numerical experiments, yielding
data which -- although inferior in obvious respects to reliable wind-tunnel
results -- have nevertheless served to fill the void which still exists
because of the scarcity of comprehensive measurements. Indeed, much of
what is known at this time about unsteady boundary layers has been derived
from theory rather than from measurement, and, while the need for good
wind-tunnel experiments to confirm the calculated results (or at least to
validate the theoretical models) remains as acute as ever it was, the
information content of calculations seems likely to ''stay ahead' of that

of measurements for some time to come.

The most recent work on unsteady turbulent boundary layers, done by the
present author and his co-workers, has been concerned with the effects

of time-dependence on reversal and separation onset. It was shown in
References [1,2] that time-dependence results in a delay of reversal onset,
and that this delay could not be related in any simple manner to an alle-
viation of the pressure gradients; indeed, some measure of delay was
observed even when the pressure gradients were augmented by the effects

of the unsteadiness. It was shown further, that the reversal point in an
unsteady turbulent boundary layer is not a singular point -- an observa-
tion which confirmed earlier statements which had been made concerning

laminar fiow [3,4,5,6] -- and that the boundary layer remains thin even



though reversal had taken place [I]. Subsequent work was directed to
studying a class of unsteady turbulent boundary layers in which a region
of embedded reversal was allowed to develop but in which, under certain
conditions, a singularity occurred sometime later [7,8]. This singu-
larity is related to the final separation of the boundary layer, in the
sense of detachment of the outer flow from the body surface, and repre-
sents the limit of validity of first-order boundary-layer theory. However,
the regime between reversal and separation appears to be accessible to
first-order theory [7], and the calculations which were performed in this

regime are believed to be meaningful.

The present work, which forms a sequel to that of Reference [7], has two
main objectives:
1. to extend the calculations of unsteady turbulent boundary layers
to a wider range of flow configurations, and
2. to try to elucidate the mechanism of separation onset by perform-
ing higher-order calculations which would not break down as the
result of the development of a singularity.
In pursuit of the first objective, calculations have been performed for
two additional types of flow: flows in which an unsteady retardation is
first imposed, but where the external velocity distribution is subse-
quently frozen allowing a relaxation towards steady-state conditions, and
oscillatory flows in which reversal occurs during part of the cycle. The

results of these calculations are presented in Part | of this report.

The second objective was pursued by programming a simple method for solv-

ing the unsteady Navier-Stokes equations, and performing some calculations




for laminar flow. It was recognized that the characteristics of turbu-
lent flows would not be represented appropriately by this means, but it

was hoped that the mechanism of separation would have sufficient generality
to make these laminar calculations useful. The results of this study are

presented in Part 1l of the report.



PART 1.. TURBULENT FLOW CALCULATIONS

1.1 NATURE OF THE FLOWS CONSIDERED

The turbulent boundary-layer studies reported here were carried out for
incompressible, time-dependent flow over a two-dimensional surface of
large or infinite radius. As in the earlier work [1,7], orthogonal
coordinates are erected on the surface, with y measured normal to it and

x measured along the surface from some origin where the boundary layer is
already turbulent and of known properties: corresponding to steady, con-
stant-pressure conditions. The main features of the calculation method
are reviewed in Appendix A. The calculations relate to the boundary layer
developing over a '"plate' of chord c which extends downstream from the

origin.

The external velocity: Ue’ over the plate, is assumed to vary in a pre-

scribed manner with x and time, t. Specifically, it is assumed that

U =U, for t <0 and all x (1)
e o —

u X

L= - X (1 -f(t)}, for t >0 and 0 < x < x (2)
U X = e
o (o}

U x] - X

U§-= 1 - —.ji;-— {1 - f{t)}, for t > 0 and x, <x ¢ (3)

where U0 is some reference velocity, and X, and x, are prescribed values
of x: X, = 5c/7 ( = 0.714c), Xy = 2x°. In Equations (2,3), f(t), which

is the value of Ue/Uo at x = X is chosen to be a function of time, with



the restriction that f = 1 at t = 0 in order to satisfy Equation (1).

The flows discussed in Reference [7] corresponded to
f=1- mxot/C, : (4)

where w = constant, which imposed a distortion of the external flow which

was monotonic in time.

Here, the emphasis is on patterns of distortion of the external velocity
field which are of two other types:
(1) patterns in which an initial distortion, extending over a finite
interval (0 <t f.tf)’ is followed by freezing of the external
velocity field,

(2) oscillatory external velocity fields.
The '"frozen'' flows were generated by taking

f=1-0Q- ff)t/t for 0 <t < tg (5)

fl

f=f for t > te (6)

f’

Values of ff = 0 and 0.5 were used, together with values of tf corre-

sponding to Uotf/c = 0.2, 1.0, and 2.0,
The oscillatory flows were of a triangular waveform, and were generated
by taking

t -t
f=0.5-A4—2-1) (7)

over the first half of the cycle: t <t <t + tp/2, and



t -t
f=o.5+A{4-——t—°

p

- 3} (8)

over the second half of the cycle:. t0 + tp/2 <t f_to. Here, tp is the
period of the oscillation, and to refers to the beginning of the cycle.
It will be noted that the mean value of f is 0.5, except® for the first
half-cycle of the motion (0 < t f_tp/Z) where an initial transient sat-

isfies the requirement: f =1 for t = 0; this transient is defined by

F=1-(+20) & (9)
p
The period of the motion, which in dimensionless terms is Uotp/c, was
varied between 2.0 and 8.0 in the calculations. The constant A, in Equa-
tions (7,8,9), controls the amplitude of the oscillatory external velocity
distribution; values between 0 and 0.5 were chosen for the calculations.
When A = 0, the flow degenerates from an oscillatory to a ''frozen' flow

(as defined above) with ff = 0.5 and te = tp/Z.

When A = 0.5, in the oscillatory calculations, the external flow stagnates
momentarily (i.e. Ue = 0), at the point on the surface: x = x s once
during every cycle: namely, at t = to + tp/Z. With ff = 0, in the
"frozen flows,' stagnation of the outer flow occurs at x = X for all

times subsequent to t =t Stagnation does not occur at all if A < 0.5,

£

in the oscillatory flows, and if ff > 0 in the frozen flows.

Figure 1 illustrates the features of the two types of flow, and provides

a graphical definition of the parameters ff, tf, tp and A.

“lf A = 0.5 the mean value of f is 0.5 even during the first half-cycle.



1.2 COMPUTATIONAL EXPERIMENTS

Frozen Flows

A number of calculations were done for flows in which the external
velocity distribution was frozen, at t = tf, following an initial dis-

tortion starting at t = 0.

Figures 2 through 7 show the spacial distributions of wall shear stress
and displacement thickness, respectively, at various time levels, for

the following cases:

Uotf/c fF
0.2 0
2.0 0
2.0 0.5.

In the first two cases, a region of reversed flow, of substantial extent,
has already formed on the plate by the time (t = tf) the external flow
is frozen. In the third, reversal has not yet taken place at the time
of freezing but occurs later. With fF = 0, stagnation of the outer flow
occurs at x = Xy and t 2_tf, and the displacement thickness takes on a
locally infinite value. However, this infinity reflects the division by
zero in the definition of displacement thickness and does not necessarily

indicate the presence of a singularity in the solution of the boundary-

layer equations.

Various criteria were described in Reference [7] for identifying the onset
of a singularity: steepening of the gradients of wall shear stress and
displacement thickness, versus x, the development of locally high dis-
placement-thickness maxima, and breakdown of the boundary-layer approxima-

tioned. A surrogate criterion was also suggested: §* = 0.lc, for flows



of the present type and at these Reynolds numbers, which appeared to
correlate with the other criteria, and which helped to pinpoint the loca-
tion of the locally high gradients between node points in the calcula-~
tion. This surrogate criterion will be used here also, for the moment,
although its usefulness is called into question later in the discussion.
In any case, it is necessary to repeat the cautionary statements made in
Reference [7] to the effect that the real measure of singularity onset is
steepening of the velocity gradients rather than the attainment of some
arbitrary value of &%, and that the surrogate only has validity insofar

as it helpé to locate the formation of the steep gradients.

Figures 2 through 5, which relate to the two cases where ff= 0, indicate
that incipient singular conditions form at a time corresponding to Uot/c==2.0
for Uotf/c = 0.2, and at a time corresponding to Uot/c = 3.0 for Uotf/c = 2.0.
Thus the lower initial rate of distortion of the outer flow, in the latter
case, results in a delay in the final onset of the singularity. Figures 8,

9, in which the wall shear stress and the displacement thickness are plotted
versus time, emphasize this delay. The small dip in one of the curves of

6% versus time (Figure 9) results from a forward movement of the 8% maximum
on the plate. It is interesting to note that, for these two cases with ff= 0,
there is a measure of similarity in the development of each solution towards
singular conditions: the two sets of results (for T, ©°F 6*) would roughly
coincide if they were plotted against t- ts’ where tS refers to the onset of
the singularity. This similarity does not extend to the case where ff= 0.5
(Figures 6,7), where the approach to the singularity is somewhat slower
(Figures 8,9). The slower approach to singular conditions presumably has to
do with the smaller gradient of Ue with respect to x, when ff= 0.5, but direct

comparison of the results for this case with those for ff= 0 is difficult



because the singularity forms further aft when ff = 0.5: at around

x = 0.6c, rather than x = 0.25c with ff = 0.

In Reference [7] a semi-empirical model was proposed for predicting the
onset of the singularity. The procedure was to compare the velocity of
penetration of the reversal point, upstream into the oncoming boundary
layer, with an average ''convection'' velocity in the reversed-flow region.
For want of a better definition, this convection velocity was taken to

be one-half of the maximum negative velocity in the region at the particu-
lar time level. The prediction criterion proved useful in correlating

the results of Reference [7], and it was therefore of interest to see
whether it would be valid here. To this end, estimates were made of the
penetration velocity, for the three frozen flows considered here, by plot-
ting the movement of the‘point of flow reversal (Figure 10), and differ-
entiating the curves graphically. The values obtained in this manner

are shown in Figure 11, and compared with data for the convection velocity,

as defined above.

The points of intersection of the curves corresponding to the pairs of
velocities yields the predicted times at which the singularity is sup-

posed to form. These predictions are compared with the approximate

observed values (indicated by 6° = 0.1c) in the following table:
Case: Predicted onset Observed onset
U t./c f U t/c U t/c
o f _f o o
0.2 0 1.2 2.0
2.0 0 2.2 3.0
2.0 0.5 3.9 4.8,




It will be seen that there is a constant discrepancy in Ugt/c, of about
0.8, between the predictions and the observations, and the criterion has
no more than qualitative validity for these results. The reason why it
does not apply here is not clear, although some suggestions can be made.
It might be suggested that the assumed ratio of convection velocity to
maximum negative velocity needs to be reduced. However the discrepancies
are too large to be resolved in such a manner: the ratio would have to be
reduced virtually to zero to make the predictions and observations agree.
Indeed, for the present frozen flows, the singularity does not seem to
form until the forward movement of the reversal point has ceased: i.e.
until the penetration velocity has fallen to zero. |In the flows discussed
in Reference [7], the singularity was observed to develop while the
reversal point was still moving forward. Another suggestion, antici-
pating some of the later discussion in this report, is that the real
singularity, in the sense of steepening of the gradients, does form at

the predicted times, and that the discrepancies simply measure the failure
of the surrogate criterion to pinpoint its formation. Since the surro-
gate criterion was used in the derivation of the heuristic model, in
Reference [7], the implication must be that the rates of increase of &*
with time were so much greater than they are here that any differences

in timing between true singularity onset and the condition: §F = 0.lc,
were masked. It is true that the rates of increase of 6* were generally
higher, in Reference [7], than they are in the present flows, and so the
suggestion has some merit. On the other hand the discrepancies, between
the predicted and the observed singularity onset are rather larger than

can be explained entirely in this way, and for the moment the conclusion

10



must remain that the heuristic model, proposed in Reference [7], is not
sufficiently general to make quantitative predictions outside the class

of flows for which it was originally developed.

1



Oscillatory Flows

(a) Two sets of calculations were performed for oscillatory flows; the
first set was concerned with the effects of variation of frequency, and

included the following cases:

Uotp/c A
2.0 0.5
L.o 0.5
8.0 0.5.

The function f(t), corresponding to each of these cases, is plotted in

Figure 12. The pressure gradient over the plate: 3p/3x, is given by

ldp___e_y _=e (10)

and varies with both x and t. The pressure gradient has a discontinuity
at x = xo; however, the value at x = x; is representative of conditions

over the forward portion of the plate: 0 < x 2 Xy and can be expressed

as a function of f and its derivative f' (= df/dt) by:

c__d_¢c -f) - S g
7 5% = x f(1 - ) J fro. (1)
pU o} o
o
Now, since from Equations (7.8), f' = -2/tp, over the first half of the

cycle, and - 2/tp, over the second half, 3p/3x at x = x; can be determined
as a function of time, and is shown in Figure 13 for the three cases

defined above.

12



The distributions of wall shear stress and displacement thickness, for
the three cases, are presented in Figures 14 through 19. The emphasis,
here, is on demonstrating the failure of the boundary layer to reach a
stable oscillatory condition. By contrast, when reversal does not occur
during part of the cycle, stable conditions are reached after a few cycles
(see Reference [9]). For Uotp/c = 2.0 (Figures 14,15), the distributions
at stages through the first cycle are compared with those at correspond-
ing stages during the second cycle. It will be seen that the wall shear
stress is typically lower, and the displacement thickness typically
higher, during the second cycle than the first. The differences are most
conspicuous over the range of x corresponding to the reversed-flow region.
This trend continues through the third cycle, and is evidently associa-
ted with the gradual approach towards eventual separation and the forma-
tion of a ;ingularity. Nevertheless, during the latter part of the first
cycle and the early part of the second, the reversed-flow region shrinks
and vanishes, and forward flow is temporarily reestablished over the
whole of the plate. This intermittent behavior which will be discussed

more fully later, is repeated for at least two more cycles.

For the intermediate frequency: Uotp/c = 4.0 (Figures 16,17), reversed
flow persists throughout the first cycle and a singularity forms towards
the end of the cycle. It will be recalled from Figure 13 that 3p/3x < 0
during the second half of the cycle, and so we have the interesting
situation here in which reversed flow exists on the plate in spite of a
favorable pressure gradient. With Uotp/c = 8.0, a singularity forms
during the first half-cycle and forward flow is never recovered once

reversal is established-
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The movement of the reversal point, with time, is plotted in Figure 20,
for the three cases. 1In all three cases, reversal first occurs near

X = X and then moves rapidly upstream with increasing time. At the
highest frequency considered (Uotp/c = 2.0), the reversal point reaches

a furthest upstream position at the mid point of the cycle and then moves
aft again, with reversed-flow vanishing at a point on the plate somewhat
upstream of x - At the two lower frequencies (Uotp/c = 4.0 and 8.0), the
reversal point never moves appreciably aft from its furthest-upstream
position. The approximate times at which 8" first reaches the value 0.lc

(other than when Ue -+ 0) are shown on the curves in Figure 20.

In order to observe an intermediate behavior, between that for Uotp/c==2.0
in which reversed flow temporarily vanishes during part of the cycle, and
that for Uotp/c = 4.0 when it persists indefinitely, an additional calcu-
lation was made for Uotp/c = 2.8 and the results are shown by the dashed
curve in Figure 20. Here, forward flow is reestablished for a short

time, at the end of the first cycle, but reversed flow persists during

the second cycle with 6 reaching the value 0.lc about half-way through

the second cycle.

Figures 21, 22 show the variation, with time, of the wall shear stress
and displacement thickness at two neighboring positions on the ptate,
for this last case. The displacement thickness reaches 0.lc at about
Uot/c = 4.0, although steep gradients of wall shear stress occur some-
what earlier. It is of interest to note the pronounced phase shift
between the displacement thickness and the external velocity gradients

(which are symmetrical about the mid point of the cycle) even during
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the first cycle when the flow is still far from developing a singularity.
The magnitude of this phase lag is considerably greater than the lags
found in Reference [9] for flows which did not suffer reversal during

part of the cycle.

The limited data presented here suggest that there is some connection
between the persistence of reversal during the cycle, even when the
pressure gradient becomes negative, and the appearance of the singular-
ity. This may simply mean that a singularity can only develop when
reversed flow is present; but, if so these results are at variance with
suggestions which have been made that a singularity can occur upstream
of reversal. Alternatively, the incipient formation of a singularity
may somehow inhibit the shrinkage and disappearance of the reversed-flow

region which would otherwise take place.

{(b) The second set of calculations for oscillatory flow was concerned
primarily with the effects of variation of amplitude, and included the

following cases:

Uotp/c
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The two cases with A = 0.5 are the same as two of the oscillatory flows

mentioned above, and the case: A = 0, Uotp/c = 4.0 is the same as the

frozen flow, where Uotf/c = 2.0 and ff = 0.5, which was discussed



earlier. The function f(t) is plotted in Figure 23, for the cases where
Uotp/c = 2.0, and in Figure 32 for .the cases where Uotp/c = 4.,0. The

corresponding plots of the pressure gradient, at x = X, » are shown in

Figures 24 and 33, respectively.

The distributions of wall shear stress and displacement thickness, over
the plate, for the cases where Uotp/c = 2.0, are shown in Figures 25,

26 for a time corresponding to Uot/c = 4.0: i.e., at the end of two com-
plete cycles, and in Figures 27, 28 for Uot/c = 5.0, which corresponds
to the mid point of the third cycle. In Figures 29, 30 the wall shear
stress and displacement thickness at one point on the plate, are plotted
versus time, and Figure 31 shows the movement of the reversal point with

time.

It will be noted from Figure 29 that, for A = 0 and 0.1, reversal does
not occur until some time during the second cycle. However, once it
does take place, it persists until a singularity develops in the third
cycle (Figure 28). In contrast, for A = 0.3 and 0.5, reversal appears
during the first cycle but subsequently vanishes again, later in the
cycle, leaving forward flow reestablished over the whole plate. This
intermittent formation and subsequent disappearance of reversed flow is
repeated for at least two more cycles (Figure 29). The displacement
thickness reaches a value of 0.lc at around the mid point of the third
cycle, when A = 0.3, but there is no evidence of singular behavior any-
where in the first three cycles when A = 0.5 (the calculation was not
continued beyond Uot/c = 6: the end of the third cycle); the large values

of &% at ut/c =5 (Figure 28) result from the stagnation of the outer



flow and do not indicate the onset of a singularity in the solution. The
difference in behavior between the two low-amplitude cases, in which
reversal persists throughout the second and subsequent cycles, and the
two high-amplitude cases, where reversal is intermittent, correlates

with the sign of 3p/dx during the second half of the cycle (Figure 24):
positive for A = 0, 0.1 and negative for A = 0.3, 0.5. On the other hand
it has already been observed that reversal can persist even when the pres-
sure gradient is favorable, and, clearly, the mechanism which controls the
appearance and disappearance of the reversed-flow region is not simply a
function of the pressure gradient. Indeed, as already mentioned, it was
shown in Reference [1] that time-dependence caused a delay in the first

appearance of reversal even when 9U/3t made a positive contribution to

the pressure gradient.

Figures 34 through 36 present data for the lower frequency calculations

(Uotp/c = 4.0). Here, it will be seen that forward flow is not recovered

for any of the amplitudes considered; once formed, reversal persists
until 6* reaches 0.lc near the end of the first cycle. Specifically,
singularity onset (according to this criterion) occurs earliest for the
high-amplitude case: at Uot/c = 3.7, and latest for A = 0: at about
Uot/c = 4.7. This order of onset, in terms of the values of A, is oppo-
site to the order observed at the higher frequency. The difference is
probably associated with the failure of the reversal point to move aft,
during the second half of the cycle, when Uotp/c = 4.0 (Figure 36). At
the lower frequency, the reversal point moves forward, during the first
half-cycle, and subsequently remains near its furthest-forward position,
leaving an extensive region of reversed flow, for the duration of the
motion. It is interesting to note the wide variation in the terminal

positions of the reversal point, over the range of amplitudes considered:
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from about x = 0.6c, when A = 0, to about 0.34c when A = 0.5 (Figure

36).

It is clear that, at this relatively low frequency, the behavior of the
boundary layer is strongly influenced by the adverse pressure gradients
present during the first half cycle. The alleviation of these gradients,
during the second half cycle, has less effect than it does at higher
frequencies, although the effects are still noticeable. This can be

seen by comparing the movement of the reversal point for the case:

Uotp/c = 4.0, A =0.5, in Figure 36, with the dashed curve which corre-
sponds to the frozen flow: Uotf/c = 2.0, ff = 0; the two flows suffer
the same retardation during the interval O j_Uot/c < 2.0, but different

retardations thereafter.



1.3 THE NATURE OF UNSTEADY SEPARATION

Some important conclusions concerning the nature of unsteady separation
of the turbulent boundary tayer are suggested by the results of the compu-

tational experiments presented above.

First: the relaxation of a turbulent boundary layer, which has been
subjected to an initial retardation strong enough to cause reversal,
towards a steady state separation, is achieved in a finite time. It was
suggested, in Reference [1], that the relaxation time is of the same order
as the time taken for the fluid to be convected off the part of the sur-
face ahead of the ultimate point of separation. The present results
support this hypothesis: the calculations for the frozen flow in which
Uotf/c = 0.2, ff = 0, indicate incipient separation at x = 0.27c in a
time Uot/c = 2.0, implying that all of the fluid with an average velocity
exceeding 0.]5Uo had been replaced by new fluid entering the boundary
layer after time te. In the case, just mentioned, the initial retarda-
tion was abrupt; in cases where the retardation is more gradual the time
necessary to reach incipient separation is longer. However, the final
divergence towards singular conditions, as separation is approaches, is
rapid, with the displacement thickness increasing roughly exponentially

with time.

Second: the approach to the separation singularity, in oscillatory flows,
appears to be a function of both the long-time-average, and the instan-
taneous, pressure gradients. At low frequencies, the effects of the

adverse instantaneous pressure gradients seem to dominate, and separation
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can occur during the first half-cycle if the gradients are sufficiently
severe. At higher frequencies, the approach to separation appears to
depend more on the time-average pressure gradienté, while the nature of
the instantaneous gradients may be such as to have a delaying effect on
separation onset. In one of the cases examined (Uotp/c = 2.0, A=0.5),
three complete cycles were completed without evidence of imminent separa-
tion even though the average gradients were large enough to provoke sepa-
ration after two cycles (as can be seen from the results for Uotp/c= 2.0,

A=0).

The delay of separation onset, observed in the oscillatory cases, where
the amplitude in large, is evidently associated with the alleviation of
the pressure gradients during the parts of the cycle when the external
velocities are increasing with time: (instantaneously favorable gradients
can exist, at sufficiently high amplitudes and frequencies, which offset
the time-average adverse gradients. O0On the other hand, the existence of
favorable instantaneous pressure gradients is not enough to guarantee the
avoidance of separation -- or even to guarantee the reestablishment of

forward flow in place of a reversed-flow region.

In some cases the reversed-fiow region did vanish during the phases of
the motion when the pressure gradients were favorable. In others, not
only did the reversed-flow region persist during such phases, but the
extent of the region actually increased. This type of behavior seemed
to occur when the flow in the boundary layer was already retarded to a
degree where separation could be expected to occur shortly: the change

to favorable pressure gradients was then ''too late' to save the boundary
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layer from separating. Figures 37 through 40 contrast, in more detail,
the cases where recovery was achieved, with those where it was not
achieved. Figures 37,38 show a typical recovery from reversed flow to
forward flow, as the pressure gradient changes sign from positive to
negative. Thes; results, which are for the oscillatory flow: Uotp/c =
2.0, A = 0.5, show the velocity profiles before and after the recovery.
The boundary-layer thickness increases as a result of the recovery,
although the displacement thickness decreases (Figure 15). Figures 39,
Lo show a case which fails to recover (Uotp/c = 4.0, A = 0.5) despite a
similar change in the pressure gradient; instead, the reversal point
moves further upstream, accompanied by an abrupt increase in the boundary-
layer thickness over the reversed-flow region. This latter effect is
reminiscent of the flow patterns, reported in Reference [7], depicting
the approach to singular conditions, although the onset of a singularity
(according to the surrogate criterion: 6% = 0.1c) has not yet been
reached in the solution plotted in Figure 40. A more detailed examina-
tion of the results indicates, however, that the solution in Figure 40
already contains a singularity. Figure 41 shows a plot of the velocity
at y = 0.1, versus x, for the two sets of results, before and after the
change in pressure gradient. In the case where recovery is achieved, the
progression from reversed to forward flow is accompanied by a smooth,
continuous variation of velocity with x. In contrast, in the case where
recovery did not take place, a discontinuity in velocity occurs, and the
part of the solution where U > 0 loses contact with the part where U < 0.
The large values of 3U/3x, across the discontinuity, give rise to large

values of 3V/3y, and correspondingly large values of V, which are
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reflected in the growth of the boundary-layer thickness seen in Figure

Lo, but they have not yet been translated into values of §* exceeding

0.1c. Nor does the solution imply an excessively large normal pressure
gradient, at this stage. Two conclusions therefore seem to emerge:

(1) that the failure of a boundary layer to recover forward flow upon a
change in the pressure gradient is indicative of an incipient singularity,
and (2) that the onset of a singularity may not always result in an immediate
gross thickening of the boundary layer. This second conclusion needs to

be examined more carefully in future work because singularity onset has
normally been identified with imminent separation. The present computa-
tional framework would not be particularly appropriate for such an examina-
tion because of the coarseness of the mesh in the x-y plane, and because
there may be some suppression of large temporal gradients (even though
short time steps were used). Some analytical studies would appear to offer

more prospect of success.

Meanwhile, the possibility exists that a sequence of events takes place,
prior to the final separation of the flow, in which the extent of flow
reversal increases, and thickening of the boundary layer occurs, regard-
less of any alleviation of the separation-provoking pressure gradients.

In none of the cases discussed here was a retreat from imminent separation
observed, although it may be demonstrated by further work that the imposi-
tion of sufficiently strong favorable gradients would bring this about.

ft is interesting to draw a parallel, here, with the hysteresis effect
observed in dynamic stall: the recovery of the flow on the airfoil is

not achieved until the incidence is reduced substantially below the level

reached before stall occurred [10]. The flow around a pitching airfoil
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is clearly more complicated than the flows discussed in this report; in
particular, the vortex shed from the leading edge of the airfoil plays an
important role in the hysteresis process. Nevertheless, a general rule
may be emerging that, once the separation mechanism is initiated, it is
necessary to take drastic steps, in terms of a change of external-velocity
conditions, to restore the boundary layer to an attached condition. Some
further calculations, on the present lines could usefully be done to pur-

sue this particular objective.
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PART 11. LAMINAR FLOW CALCULATIONS

1.1 NATURE OF THE FLOWS CONSIDERED

The laminar-flow studies were carried out for incompressible, two-dimen-
sional, time-dependent flow over a flat surface. The viscous portion of
the flow was taken to be boundary-layer-like, insofar as the longitudinal
extent of the flow was assumed to be large compared with its transverse
extent, and the potential-flow velocity was prescribed along the upper edge
of the integration domain, which ran parallel to the wall. On the other
hand, no assumption was made about the smallness of second derivatives in
the longitudinal direction (except at the downstream end of the domain), and
no restriction was placed upon the variation of static pressure normal to
the wall: the solution in the interior of the domain corresponds to the
full unsteady Navier-Stokes equations. Details of the equations, and the

numerical scheme used to solve them, are given in Appendix B.

It was assumed that the upstream edge of the plate, upon which the flow

was developing, was a sharp leading edge. At the downstream end of the
plate, it was assumed that (regardless of its earlier condition, further
upstream) the flow had recovered to a form which was consistent with the
first-order boundary-layer approximations; this assumption was made in order
to avoid the need for specifying the downstream velocity and vorticity pro-
files. The region of interest was the portion of the flow over the central
part of the plate, where reversal was induced by suitable choice of the
external velocity distributions. These distributions were similar to those

defined by Equations (1,2,3), above, and the same values of xo/c and x]/c
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were used. The Reynolds number: Uoc/v, was taken to be 10 .

Results are presented here for a single case, viz. a '"frozen flow," of
the.type considered in Part 1, above with Uotf/c = 2.0, and Ff = 0.5.
These results are of interest both in themselves and insofar as they may
be compared and contrasted with the results of the corresponding turbu-

lent calculation which has already been described.

The initial conditions, at t = 0, correspond to steady, constant-pressure
flow, and were generated by means of a time-relaxation calculation; an
approximate solution was assumed, and then the calculation was advanced in
time until the steady-state solution was obtained; At the high Reynolds
number, for which the calculation was performed, it would be expected that
the exact sulution of the Navier-Stokes equations would be close to the
Blasius solution of the laminar boundary-layer equations, the only signifi-
cant difference in boundary conditions lying in the confined domain in
which the present flow was assumed to be developing; the height of the domain
was taken to be 0.lc at t = 0. The velocity profiles produced by the time
relaxation process are compared with the Blasius profiles in Figure L42.

Calculations were done for three different mesh densities:

(a) ax = 0.1c, Ay = 0.0lc (11 x 11 node points)
(b) Ax = 0.05c, Ay = 0.005¢ (21 x 21 node points)
(¢) Ax = 0.025c, Ay = 0.0025¢c (41 x 41 node points)
It will be seen from Figure 42 that the agreement with the Blasius solu-

tion is good for the finest mesh, tolerable for the medium-density mesh,
and poor for the coarse mesh, particularly over the upstream half of the

plate. There are two main reasons for the poor agreement, in this last
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case: first, the number of node points through the boundary layer is
too small to give proper resolution of the higher derivatives in the
y-direction, and second, the wide mesh spacing in the x-direction leads
to inadequate resolution of the longitudinal derivatives associated with

the flow near the leading-edge.

Some comments need to be made here concerning the artificial viscosity,
introduced by the finite mesh size, and its effect on the quality of the
solution. The appropriate measures of artificial viscosity are the two
cell Reynolds numbers: UAx/v and VAy/v, which multiply second deriva-
tives in the x- and y-directions, respectively. |If these cell Reynolds
numbers are everywhere small compared to 2, the solution can be regarded
as valid; otherwise the effective Reynolds number of the solution is
reduced, at least in the regions of the flow where those conditions are
not satisfied. Now, in the present flow, at t = 0, the transverse cell
Reynolds number: VAy/v is at most about unity, even for the coarse mesh,
and so its effects on the derivatives: Bz/ayz, cannot be considered
serious. The longitudinal cell Reynolds number: UAx/v, is much higher
than 2, even for the finest mesh, and can scarcely be reduced to 2 without
placing an enormous number of node points in the x-direction. However,
it affects only the second derivatives in x which, fortuitously are small
for the constant-pressure flow; these derivatives are neglected altogether
in the Blasius solution. Consequently, the solution for t = 0 appears

to be relatively free of the effects of artificial-viscosity. The same
cannot be said of the subsequent solutions for t > 0, however. There,
VAy/v would begin to exceed 2, even for the finest mesh, and, also,
second derivatives in X start to become significant. Thus artificial-

viscosity becomes a more serious problem as time increases, and this fact
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needs to be borne in mind during the discussion of the results throughout

this section.

On the basis of the comparisons shown in Figure 42, and for reasons of
computational economy, it was decided to use the medium-density mesh for
the time-dependent calculations for t > 0. In order to allow for the
growth of the viscous region, the height of the domain was allowed to
increase with time: from 0.lc, at t = 0, to 0.2¢c, at t = 5c/Uo, after
which the height was held constant. This scheme proved to be satisfac-
tory, in the light of the solutions obtained, but it must be remembered
that the solutions are not independent of the extent of the domain because
the Navier-Stokes equations permit pressure gradients to develop normal
to the wall. The specified rate of increase of height must, therefore,
be included among the significant boundary conditions imposed on the

flow.

The prescribed variation of U, along the upper edge of the domain --
according to the definition of the frozen flow considered -- represents

a second boundary condition, and the variation of V represents a third.
It emerged that the proper variation of V, along the upper edge, had to
be chosen with some care. |f V is taken to be zero, there, continuity
demands that the retardation of U, at the boundary, has to be offset by
an acceleration within the domain. Consequently, the flow near the wall
feels less retardation than the flow at the upper boundary, and the alle-
viation of the longitudinal pressure gradients, due to the effects of

the normal ones, increases with the height of the domain. A retardation

imposed at a large distance from the wall has little or no effect on the
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viscous flow, and may not be large enough to produce reversal. In an
attempt to reduce the extent of the accelerations within the domain, V
was given a positive value, on the upper boundary, for 0 < x < X and

a negative value for Xy < % < c. Specifically, V was put equal to
sal/ox, where s is the height of the domain, which extracted enough mass
to offset the decrease in U at the boundary. It was not large enough to
prevent accelerations entirely, within the domain, but experimentation
showed that. such large values of V were needed to achieve this that the
cell Reynolds-number problem was seriously aggravated. It suffices to
say that the performance of the present laminar calculations was not as
straightforward as it might seem, at first sight. Three seemingly sepa-
rate problems: the choice of the height of the domain, the choice of
the V-distribution along the upper boundary, and the artificial-viscosity
problem, are actually closely related (computer time is a fourth related
problem), and a suitable compromise had to be found that attempted to

satisfy all of them.
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1.2 COMPUTATIONAL EXPERIMENTS

The calculations for the frozen flow (in which Uotf/c = 2.0) were con-
tinued up to a time level: Uot/c = 8.0. Typical velocity profiles
through the viscous-flow region are shown in Figures 43 through 45, and
the longitudinal distributions of wall shear stress and displacement
thickness are plotted in Figures 46,47. Several of the velocity profiles
exhibit an overshoot which reflects the acceleration within the domain,
mentioned above, which tends to alleviate the applied retardation. Never-
theless, in spite of this degree of alleviation, reversal occurs at the
wall, and the region of reversal extends over most of the plate at the

highest time level reached.

Figures 46,47 may be compared with Figures 6,7 which relate to the corre-
sponding turbulent boundary layer. A number of significant differences
may be noted between the two sets of results. First, reversal takes
place before t = tf, in the laminar flow, whereas it did not occur until
some time later in the turbulent flow. Second, the extent of reversed
flow is substantially larger in the laminar case. Third, the variation
of wall shear stress is characteristically different in the two cases:

it is not only more gradual, in the laminar flow, but it exhibits a double
minimum at the higher time levels: a double minimum did not occur in the
present turbulent flows, and indeed has never been observed in any of

the turbulent calculations performed by us so far. Finally, and perhaps
most important. The abrupt changes of displacement thickness, associated
with singularity onset in the turbulent boundary layer, are completely

absent in the laminar flow. Figure 47 indicates that the displacement
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thickness is tending towards a stable, steady-state solution; it must be
remembered that the Navier-Stokes equations admit solutions corresponding
to steady-state separation, whereas the first-order boundary-layer equa-
tions do not. The trend towards an asymptotic solution is emphasized in
Figures 48,49 which show the variation of the wall shear stress and dis-
placement thickness with time, for one point on the plate. It is inter-
esting to note, from Figure U8, that the wall shear stress in the laminar
flow is of substantially larger magnitude than -that in the turbulent case.
This difference is partly due to the difference in the Reynolds number:
laminar, flat-plate skin friction at Re = IOLl is roughly twice the turbu-

lent, flat-plate skin friction at Re = 107.

The difference is accentuated,
here, because of the larger extent of the reversed-flow region, in the
laminar case, and because of the nature of the velocity gradients within
the region. The displacement thickness in a laminar flow at Re = 10 is

7

about the same as that in a turbulent boundary layer at Re = 10°, and
Figure 49 shows that 6% is of comparable magnitude, in the two cases
considered here, over the initial time steps. The major difference in
behavior for larger times, lies in the abrupt increase of 8% with time,

in the turbulent flow, compared with the progressive increase towards an

asymptote in the laminar flow.

It might have been expected that the laminar calculations would exhibit
some development which, although not of the proportions of a singularity,
would in some way resemble the steepening gradients characteristic of the
singularity observed in the turbuient boundary-layer calculations. How-
ever, the velocity profiles in Figures 43 through 45 show no such devel-

opment: the abrupt changes in the x-direction -~ typified by Figure 40,
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for example -- seem to be completely absent in the present laminar
results. |Inclusion of the second derivatives in x appear to have had the
effect of inhibiting the formation of any region of unusually large gra-
dients. The only fear is that artificial-viscosity effects may have had
too large an inhibitihg effect on those derivatives, and that a more
accurate solution of the Navier-Stokes equations, for a Reynolds number
of order loh, might indeed exhibit features somewhat intermediate between
those of the laminar and turbulent results obtained here. Further
studies, perhaps in which a large number of node points could be concen-
trated within a limited region of the flow field, might serve to resolve

these fears.

Be that as it may, another area of interest, in the laminar calculations,
involves the distribution of vorticity throughout the flow, and its
variation with time. Figures 50 through 52 show contours of constant
vorticity at three time levels. |In the initial phases of the motion,

the vorticity contours lie essentially parallel to the wall. Subse-
quently, with increase of time, the contours become distorted, and a
tongue of high-vorticity fluid moves out into the body of the flow,
leaving a region of low or negative vorticity between it and the wall.
Figure 52 may demonstrate, on a small scale, how vorticity is shed from a
boundary layer, near separation, and moves away from the body surface.
There is, of course, no separation ''point'' as-such; separation is a pro-
gressive phenomenon, associated with steadily thickening regions of vis-

cous flow, and corresponding modification of the outer inviscid flow.
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CONCLUDING REMARKS

The calculations reported herein: on the one hand, using the turbulent
boundary-layer equations, and, on the other, using the laminar Navier-
Stokes equations, were intended to shed some light on the phenomenon of

unsteady boundary-layer separation.

Earlier work had shown that flow reversal, in time~dependent boundary
layers, is not a singular event, and is not associated with the break-
down of the boundary-layer approximations. However, it was also demon-
strated that a singularity could develop some time later: associated with
steepening streamwise gradients, gross thickening of the boundary layer,
and the breakdown of those approximations, and that the onset of the
singularity could be identified with the physical separation of the flow.
The present calculations of unsteady turbulent boundary layers, which
included flows relaxing in time and oscillatory flowg, confirm the exis-
tence of a flow regime in which reversal, but not singular conditions,
prevails. However, tﬁey also suggest that singularity onset may not
always correlate with the immediate gross thickening of the boundary layer
characteristic of separation. In some of the cases examined, it appeared
that singularity onset was followed by a phase of only progressive
boundary-layer thickening; indeed the only unusual gross feature of the
solution was a lack of responsiveness to changes of the pressure gra-
dient. In this situation, alleviation of the adverse pressure gradients
did not bring about a contraction of the reversed-flow region and the
reestabl ishment of forward flow over the surface; in some cases the

extent of the reversed-flow region actually increased. The phenomenon
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described was most noticeable in oscillatory flows, when reversal was
found to persist throughout the cycle, despite the presence of instan-

taneously favorable pressure gradients.

it is, of course, of dubious validity to draw conclusions from the
behavior of a solution after a singularity. has developed, and there is
no direct evidence that the relatively slow increase of boundary-layer
thickness, accompanied by the insensitivity to changes of the pressure
gradient, has any analog in a real flow. On the other hand, there is
an interesting parallel that can be drawn with the histeresis effect

observed on airfoils undergoing dynamic stall.

The laminar-flow calculations, based on the Navier-Stokes equations, were
performed so as to study separation solutions which would not be contami-
nated by singularity onset and the breakdown of the boundary-layer equa-
tions. The solutions obtained certainly had this property, but, sur-
prisingly, they did not exhibit any of the features associated with the
early stages of singularity onset: steepening gradients or rapid thicken-
ing of the viscous region. The calculations were performed for a flow
relaxing towards a steady-state separation, and the development of the
solution was almost disappointingly uneventful. The reversed-flow region
was found to increase steadily in extent, the displacement thickness
increased progressively, approaching an asymptote, and vortical fluid

moved away from the wall into the interior of the flow.

The major enigma posed by these results concerns the physical significance

of the events leading up to singularity onset in the unsteady boundary-
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layer equations. It was to be expected that the singularity itself was
simply a feature of the boundary-layer approximations. It was somewhat
less expected that the formation of a region of locally steep gradients,
and rapid thickening of the layer, might also prove to be no more than

a figment of the boundary-layer imagination.

The matter is not yet resolved, however, and further work needs to
address a number of specific questions. First, what is the significance
of a singularity whose only observable effect is to dissociate the subse-
quent boundary-layer development from the imposed pressure gradients?
Second, to what extent was the uneventful development of the laminar
solutions, obtained here, a result of excessive artificial viscosity, and
would it genuinely be that uneventful in a high Reynolds-number viscous
flow? Perhaps it would be less uneventful in a flow of larger extent
than the one considered here. Third, at what point, in the introduction
of higher-order terms into the boundary-layer equations, does the transi-
tion from a singularity-dominated separation to a nonsingular one occur,
and is that transition the same for a laminar flow as it is for a turbu-

lent flow?
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APPENDIX A

CALCULATION METHOD FOR TIME-DEPENDENT

TURBULENT BOUNDARY LAYERS

1. Governing Equations

The velocity components in the x -, y -, z - directions are
expressed in the form U + u, V + v, W + w, respectively, where U,V,W are
defined as ensemble average velocities, with W = 0 for a two~dimensional
flow, and u,v,w are the residual fluctuating components about those
ensemble averages. The governing equations are similar to those used

in earlier studies {1,7,9,11}], namely, the momentum equation:

DU 1 3p 3
—+ — + — =
bt " P ox T By (av) =0 (A1)
the continuity equation:
au VvV
ot oy~ 0 (A2)

and the empirically-modified turbulent kinetic-energy equation:

Duv au 3

—, . uv 1/2, _
T ZaI[fuvl Fr (a, w) + T Juv| "1 =0 (A3)
In Equations (A1,A3) the convective derivative is defined by
D 3 L) 3
— = = —+ VvV — . Al
Dt ot +u X v oy (Ak)

In Equation (A3) the empirical convective constant, as and the empirical

functions of position through the boundary layer, a, and L, are taken to
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be the same as those used in Reference [1]; accordingly, the same caution-
ary statements apply to their continued use. Experimental substantiation
of the appropriateness of Equation (A3) and of the empirical parameters

in it - or guidance as to how they should be modified or improved - are
still urgently needed and awaited. The quantity ¢ in Equation (A3) is

the two-dimensional equivalent of the functions ¢x, ¢Z in Reference [12],

and is defined by
= U . — (3U
¢ = r{fuv| 5;-+ uv |§7|} , (A5)

where I' is some large number. The inclusion of this term has no effect
on the resultant shear stress, but serves to maintain directionality of

the shear-stress vector according to

— 2 3
uv = a, q2 sgn (5;9 , (A6)

where q2 is the resultant mean-square velocity fluctuation. Equation
(A6) expresses an assumption which is implied in all the two-dimensional
applications of Townsend's structural similarity hypothesis (see Ref.

[12]), on which the present model is based.

2. Solution of the Equations

The solution of the governing equations follows the approach of
References [1,7,9]. The flow is divided into an inner and an outer layer,
with the matching station between them lying at about y = 0.05 . In
the outer layer the equations are integrated by an explicit, staggered-
mesh finite-difference scheme, advancing in the positive x-direction.

The only aspect of the finite-difference scheme, worth mentioning here

concerns the method of obtaining x-derivatives. In order to avoid
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violation of the relevant zones of dependence, derivatives with respect
to x are formed using two-point backward differences in region of posi-
tive U, and two-point forward differences in region of reversed flow
(U < 0). At stations where the local flow direction is ambiguous: i.e.
where the sign of U at some node point (x,y,t) is different from that at
the adjacent points: (x - Ax,y,t) and (x + Ax,y,t), the x-derivatives
are set equal to zefo. This refinement leadé to ihbroved smoothness of
the solution at points of incipient flow reversal. Little loss of accu-
racy results because U, which is multiplied by the x-derivative in the
momentum equation, is inevitably close to zero at such points. It should
be stressed that 3U/3x is not set equal to zero throughout the reversed-
flow region, as has been done in certain other analyses of flows with
reversal; such a procedure clearly leads to an invalid solution because
typical values of U3U/3x are by no means numerically small compared to
the other terms in the momentum equation.

Further details of the numerical scheme, in the outer layer, can be
found in References [1,9,12,13,14], and the reader is referred thereto.

In the inner layer, near the surface of the plate, the numerical
solution is again matched to an approximate solution based on the Law of
the Wall. The details of this inner solution have been modified, as
compared with the earlier work, in order to handle the transition from
positive to negative values of the wall shear stress. |In the present
work, the turbulent kinetic~energy equation, for the inner layer, is

written

—1/2
ol Gy, 01 sen @ (a7)
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where the dissipation length, L, has been equated, in the usual way, to

ky. The function A, where

a1 v, L 25, (A8)
2a]uv uv Y

represents the residual imbalance between production and dissipation of
turbulent kinetic energy which, near the wall, corresponds chiefly to con-
vective transport. In the inner layer A << |3U/8y|, and is replaced by
its value, Am at the matching point with the outer-solution domain. With

Am now independent of y, we have, upon formal integration of Equation (A7):

y —1/2
U=-/ { lgiL——— + Am]-sgn (uv)dy . (A9)

o

The integral is evaluated, following Townsend [15], by prescribing a

linear stress relationship
- uv = T,/0 t oy, (A10)

where a is independent of y, and typically of the same order as Jp/ox.

1t is not difficult to perform the integration analytically; however

the resulting forms: one, if uv is of the same sign throughout the inner
layer, and two, if it changes sign, do not lend themselves readily to
programming for the computer. To avoid these problems, Equation (A9) is
integrated by a simple iterative numerical scheme. With U and uv known
at the matching point, an approximate value of Ty is estimated from

which a is determined; uv and U can then be found, as functions of vy,

for 0 <y < Yo The value of T is adjusted, by means of a simple pre-
dictor-corrector method, until the associated values of U merge smoothly

into those for the outer domain.
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3. Integration Domain

The integration domain extended from x = 0 to x = ¢, and from
y = 0 toy = s(x) where s = 1.258, approximately. The collocation
points in the y-direction, 20 in number, were distributed, as in Refer-
ence [13], to give increased density near the wall. The cé]loca;iqn
points in the x-direction were also distributed nonuniformly, so as to
give increased density in the center portion of the plate. Specifically,

the 24 points were distributed according to

x
]
\Sa]
=N

g -%+%(%)2}, . (A11)

with n =24 and 0 < j < n.

L4, Boundary Conditions

For times t < 0, the flow corresponds to steady, constant-pressure
flow in the x-direction. The boundary layer is in constant-pressure
equilibrium, with a thickness, 8§, at x = 0, of 0.00444 c. The Reynolds
number: Uoc/v, is taken to be 107.

At x = 0, the velocity and shear-stress profiles are maintained,
for all time, in the same form as at t = 0; i.e., in steady constant-

pressure equilibrium with an external velocity of Uo and the Reynolds-

number conditions specified above.
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APPENDIX B
SOLUTION METHOD FOR THE TIME-DEPENDENT NAVIER-STOKES EQUATIONS

1. Governing Equations

The Navier Stokes equations, for incompressible, time-dependent

flow, can be written in vorticity-transport form as

D _ 3z
€t~ ot " Y

Q

3,y 3 _ o2
o + V 3y wg o, (B1)

in which the single non-zero component of vorticity is ¢, where

_av _au
=3 3y (2)
and
2 2
=22, (B3)
9x oy

From Equation (B2), together with the continuity equation:

ou | 3V

—3? -37=0, (B’-l)

a Poisson equation can be derived for the velocity components, in terms

of derivatives of the vorticity:

vy = - 2 (B5)

v2y = 28 (B6)

Equations (B1,B5,B6) form a parabolic set, and represent the governing

equations, in three unknowns: z,U,V, which are integrated in a three-
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dimensional domain consisting of two space dimensions and time. The
method of solution is closely related to that of References [16,17] for
solving the parabolicized Navier-Stokes equations in three-dimensional
sfeady flow. |

2. Solution of the Equations

The governing equations are integrated by means of an implicit, alterna-
ting-direction (ADl) scheme, advancing in the positive time direction.
A rectangular mesh: x = mAx, y = nAy, is erected on the plate, permitting

discretization of the derivatives at each time level, 2:

e(®)  _ (2)
So= LA W ifu <o, (87)
() F(ﬂ
= M0 — M= ifu> o0; (88)
(2) (2)
F -F
'2"5"" m,n+£y m,n , iV < o’ (BS)
(2 _ F(m)_‘
m,n T MLN70 , if v > 0; (B10)
() _ ,-(2) (%)
BZF _ Fm+l,n 2Fm,n + Fm-l,n (B11)
2 = 2 ’ R
X (ax)
(2) _ (%) (2)
BZF _ Fm,n+l 2Fm,n * Fm,n-l . (812)
2 2 ’
3y (ay)
(2) _ (2-1)
oF _ Fm,n Fm,n (B13)
at At ’ 3

where F is any variable. Any one of the governing equations can then be
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written in difference form as

(%) (2) (2) (2) () _
AFm+]’n + BFm’n+I + CFm’n + DFm_]’n + EFm’n_I =R (B14)

where A through E are coefficients which, in general, depend on the solu-
tion, but which are regarded as known at each iteration level reflecting
the customary linearization procedure. R, in Equation (Bl14) involves

the solution at time level 2-1, which has already been calculated. The
field, m,n, is scanned alternately in the m-, and n-directions, convert-

ing Equation (B14) into the successive forms:

(2) (2) (2) _

AFm+],n + CFm’n + DFm_],n = R, (B15)
(2) (2) (2)  _

BFm’n+1 + CFm,n + EFm,n_] =R, (B16)

where R] and R, have absorbed the passive terms on the left-hand side

2
of Equation (Bl4). Equations (B15,B16) are solved by the extended
Choleski method [18], for which efficient solution algorithms are

available.

The procedure during any iteration cycle is to solve the vorticity equa-
tion to provide updated values of ¢, and then, in a second step, to solve
the two Poisson equations to provide updated values of the velocities
U,V. The Poisson equations were solved simul taneously, by regarding F
and R, in equation (Bl14) as two-dimensional vectors, and A through E as

square matrices.

3. Boundary Conditions

It is assumed that the upper surface of the integration domain (y = s)

is outside the viscous region, so that £ = 0. The velocity components

L2



are assumed to be prescribed. At the upstream boundary (x = 0), the
vorticity is assumed to be zero except at the wall where a delta func-
tion is imposed, corresponding to the no--lip condition. At the down-
stream boundary (x = c), the vorticity is assumed to be zero outside
the boundary layer, while conditions in;ide the boundary layer are
assumed to conform to the first-order boundary-layer approximationé:
32/3x2 = 0. At the wall: y = 0, the boundary conditions are U =V = 0;
the vorticity at the wall is determined as part of the solution, and

is proportional to the wall shear stress.

43




10.

.

12.

13.

Ly

REFERENCES

J. F. Nash, L. W. Carr and R. E. Singleton, "Unsteady Turbulent
Boundary Layers in Two-Dimensional Incompressible Flow,' AlAA J.

13, No. 2, February 1975.

R. M. Scruggs, J. F. Nash and R. E. Singleton, "Analysis of Flow-
Reversal Delay for a Pitching Foil," A.l1.A.A. 12th Aerospace
Sciences Meeting, Paper No. 74-183, Feb. 1974.

Sears, W. R. and Telionis, D. P., "Unsteady Boundary-Layer Separa-
tion,' Recent Research Boundary Layers (Proc. |.U.T.A.M. Symposium,
Quebec 1971), E. A. Eichelbrenner, ed., Presses de L'Université
Laval, Quebec 13572.

D. P. Telionis and M. J. Werle, ''"Boundary-Layer Separation from
Downstream Moving Boundaries,'! J. Appl. Mech., p. 369, June 1973.

D. P. Telionis and D. Th. Tsahalis, '""The Response of Unsteady Bound-
ary-Layer Separation to Impulsive Changes of Outer Flow,' AIAA 6th
Fluid and Plasma Dynamic Conf., Paper No. 73-684, July 1973.

D. P. Telionis, "Calculations of Time-Dependent Boundary Layers,'
Unsteady Aerodynamics, Vol. 1, Univ. of Arizona (R. B. Kinney, Ed.),

1975.

J. F. Nash and V. C. Patel, "Calculations of Unsteady Turbulent
Boundary Layers with Flow Reversal,!' NASA CR-2546, May 1975.

V. C. Patel and J. F. Nash, ''Unsteady Turbulent Boundary Layers with
Flow Reversal," Unsteady Aerodynamics, Vol. 1, Univ. of Arizona
(R. B. Kinney, Ed.), 1975.

R. E. Singleton and J. F. Nash, ''A Method for Calculating Unsteady
Turbulent Boundary Layers in Two- and Three-Dimensional Flows,"
AIAA J. 12, No. 5, May 1974.

W. J. McCroskey: 'Recent Developments in Dynamic Stall,' Unsteady
Aerodynamics, Vol. 1, Univ. of Arizona (R. B. Kinney, Ed.), 1975.

V. C. Patel and J. F. Nash, "Some Solutions of the Unsteady Turbulent
Boundary Layer Equations,’ Recent Research on Unsteady Boundary
Layers (Proc. 1.U.T.A.M. Symposium, Quebec 1971), A. E. Eichelbrenner,
ed., Presses de 1'Université Laval, Quebec 1972.

J. F. Nash and V. C. Patel, ""Three-Dimensional Turbulent Boundary
Layer,' SBC Technical Books, 1972.

J. F. Nash, "An Explicit Scheme for the Calculation of Three-Dimen-
sional Turbulent Boundary Layers,'!" J. Basic. Eng., 94D, p. 131, March
1972.




14.

15.

16.

17.

18.

J. F. Nash and V. C. Patel, "A Generalized Method for the Calcula-
tion of Three-Dimensional Turbulent Boundary lLayers,!' Proc. Project
SQUID Workshop, Ga. Inst. Tech., (Ed. J. F. Marshall), June 1971.

A. A. Townsend, "Equilibrium Layers and Wall Turbulence,' J. Fluid

Mech., p. 97, 1961

R. M. Scruggs and C. J. Dixon, '"Vortex/Jet/Wing Viscous Interaction

Theory and Analysis,'" Final Report, 0.N.R. Contract N00O14-74-C-0151,
Feb. 1976.

R. M. Scruggs, C. J. Dixon and J. F. Nash, '"Wortex/Jet/Wing Inter-
action Loads by Viscous Numerical Analysis,'" Proc. A.G.A.R.D.
Symposium: Prediction of Aerodynamic Loading, Sept. 1976.

R. D. Richtmyer and K. W. Morton, Difference Methods for lInitial-
Value Problems, Wiley, 1967.

ks




1.0 t=20
-
|
u./u l
e (o]
¢, |
0
|
0.54 |
l
u/u = f(t) ]
¢ o | X = X
b/
0 1 )
0 0.5 1.0
x/c
1.0

A A A
\/

' |
! H
0 t 1 H ]
£ — 1, —— time, t
|

Figure 1 Definition of the External Velocity Distributionms.

L6

. e T T L - = - - : e R . B Ve e



in

Figure 2

Wall Shear Stress Distributions for Increasing Time; Frozen Flow, Uotf/c = 0.2, ff = 0.
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Wall Shear Stress Distributions for Increasing Time;

Laminar Frozen Flow, Uotf/c = 2.0, ff = 0.5.
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Vorticity Contours at Uot/c = 8.0; Frozen Laminar Flow, Uotf/c = 2,0.
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